Big data visualization identifies the multidimensional molecular landscape of human gliomas.

نویسندگان

  • Hamid Bolouri
  • Lue Ping Zhao
  • Eric C Holland
چکیده

We show that visualizing large molecular and clinical datasets enables discovery of molecularly defined categories of highly similar patients. We generated a series of linked 2D sample similarity plots using genome-wide single nucleotide alterations (SNAs), copy number alterations (CNAs), DNA methylation, and RNA expression data. Applying this approach to the combined glioblastoma (GBM) and lower grade glioma (LGG) The Cancer Genome Atlas datasets, we find that combined CNA/SNA data divide gliomas into three highly distinct molecular groups. The mutations commonly used in clinical evaluation of these tumors are regionally distributed in these plots. One of the three groups is a mixture of GBM and LGG that shows similar methylation and survival characteristics to GBM. Altogether, our approach identifies eight molecularly defined glioma groups with distinct sequence/expression/methylation profiles. Importantly, we show that regionally clustered samples are enriched for specific drug targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery

Recent updating of the World Health Organization (WHO) classification of central nervous system (CNS) tumors in 2016 demonstrates the first organized effort to restructure brain tumor classification by incorporating histomorphologic features with recurrent molecular alterations. Revised CNS tumor diagnostic criteria also attempt to reduce interobserver variability of histological interpretation...

متن کامل

AVIST: A GPU-Centric Design for Visual Exploration of Large Multidimensional Datasets

This paper presents the Animated VISualization Tool (AVIST), an exploration-oriented data visualization tool that enables rapidly exploring and filtering large time series multidimensional datasets. AVIST highlights interactive data exploration by revealing fine data details. This is achieved through the use of animation and cross-filtering interactions. To support interactive exploration of bi...

متن کامل

Optimizing star-coordinate visualization models for effective interactive cluster exploration on big data

Interactive visual cluster analysis is the most intuitive way for finding clustering patterns, validating algorithmic clustering results, understanding data clusters with domain knowledge, and refining cluster definitions. The most challenging step is visualizing multidimensional data and allowing a user to interactively explore the data to identify clustering structures. In this paper, we syst...

متن کامل

Design and Test of the Real-time Text mining dashboard for Twitter

One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...

متن کامل

A New Analytics Model for Large Scale Multidimensional Data Visualization

With the rise of Big Data, the challenge for modern multidimensional data analysis and visualization is how it grows very quickly in size and complexity. In this paper, we first present a classification method called the 5Ws Dimensions which classifies multidimensional data into the 5Ws definitions. The 5Ws Dimensions can be applied to multiple datasets such as text datasets, audio datasets and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 19  شماره 

صفحات  -

تاریخ انتشار 2016